Motivation detection using EEG signal analysis by residual-in-residual convolutional neural network

نویسندگان

چکیده

While we know that motivated students learn better than non-motivated but detecting motivation is challenging. Here present a game-based detection approach from the EEG signals. We take an original of using EEG-based brain computer interface to assess if state manifest in physiological signals as well, and what are suitable conditions order achieve goal? To best our knowledge, level proposed for first time this paper. In resolve central obstacle small datasets containing deep features, propose novel unique ‘residual-in-residual architecture convolutional neural network (RRCNN)’ capable reducing problem over-fitting on vanishing gradient. Having accomplished this, several aspects considered, including channel selection accuracy obtained alpha or beta waves also include detailed validation different methodology, comparison with other works relevant. Our achieves 89% detect while learning, where wave frontal asymmetry channels employed. A more robust (less sensitive learning conditions) 88% achieved channels. The results clearly indicate potential states signals, provided methodologies such paper, • Detection proposed. Novel residual-in-residual designed. Proposed reduces overfitting gradient even dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

Improved Inception-Residual Convolutional Neural Network for Object Recognition

Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than in a few DCNN architectures. On the other hand, In...

متن کامل

EEG Signal based Sleep Detection using PCA and Neural Network

The electroencephalogram (EEG) is the most common tool used in sleep research. This unit describes the methods for recording and analyzing the EEG. Detailed protocols describe recorder calibration, electrode application, EEG recording, and computer EEG analysis with power spectral analysis. Computer digitization of an analog EEG signal is discussed, along with EEG filtering and the parameters o...

متن کامل

ResBinNet: Residual Binary Neural Network

Recent efforts on training light-weight binary neural networks offer promising execution/memory efficiency. This paper introduces ResBinNet, which is a composition of two interlinked methodologies aiming to address the slow convergence speed and limited accuracy of binary convolutional neural networks. The first method, called residual binarization, learns a multi-level binary representation fo...

متن کامل

Resbinnet: Residual Binary Neural Network

Recent efforts on training light-weight binary neural networks offer promising execution/memory efficiency. This paper introduces ResBinNet, which is a composition of two interlinked methodologies aiming to address the slow convergence speed and limited accuracy of binary convolutional neural networks. The first method, called residual binarization, learns a multi-level binary representation fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2021

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2021.115548